nyar	ocarbons with the molecular formula C ₁₆ H ₃₄	
(a)	Give the meaning of the terms saturated and hydrocarbon as applied to saturated hydrocarbons.	
	Saturated	
	Hydrocarbon	
(b)	If the boiler for a central heating system is faulty, a poisonous gas may be produced	
. ,	during the combustion of C ₁₆ H ₃₄	
	Write an equation for the reaction that forms this poisonous gas and one other product only.	
(c)	Explain why the sulfur compounds found in crude oil should be removed from the fractions before they are used for central heating fuel.	
(d)	A hydrocarbon $C_{16}H_{34}$ can be cracked to form C_8H_{18} , ethene and propene.	
	(i) Write an equation to show this cracking reaction.	
	(ii) Suggest one important substance manufactured on a large scale from	

		propene.	
	(iii)	Draw the displayed formula of the functional group isomer of propene.	(1)
			(1)
(e)	The	re are many structural isomers with the molecular formula C ₈ H ₁₈	
	Drav	v the structure of 2,3,3-trimethylpentane.	

(f) A compound C_8H_{18} reacts with chlorine to give several haloalkanes.

Give the IUPAC name of the following haloalkane.

(1)

(1)

(1)

(1)

Q2.Isooctane (C_8H_{18}) is the common name for the branched-chain hydrocarbon that burns smoothly in car engines. The skeletal formula of isooctane is shown below.

(a)	Give the IUPAC name for isooctane.

- (b) Deduce the number of peaks in the ¹³C NMR spectrum of isooctane.
 - 5
 - 6
 - 7
 - 8

(c) Isooctane can be formed, together with propene and ethene, in a reaction in which one molecule of an alkane that contains 20 carbon atoms is cracked.

Using molecular formulas, write an equation for this reaction.

(d) How do the products of the reaction in part (c) show that the reaction is an example of thermal cracking?

		(1)
(e)	Deduce the number of monochloro isomers formed by isooctane. Draw the structure of the monochloro isomer that exists as a pair of optical isomers.	
	Number of monochloro isomers	
	Structure	
		(2)
(f)	An isomer of isooctane reacts with chlorine to form only one monochloro compound.	
	Draw the skeletal formula of this monochloro compound.	
		(1)
(g)	A sample of a monochlorooctane is obtained from a comet. The chlorine in the monochlorooctane contains the isotopes 35 Cl and 37 Cl in the ratio 1.5 : 1.0 Calculate the M_r of this monochlorooctane.	

			$M_r = \dots$	(2)
	(h)	com _l One	octane reacts with an excess of chlorine to form a mixture of chlorinated pounds. of these compounds contains 24.6% carbon and 2.56% hydrogen by mass. ulate the molecular formula of this compound.	
			Molecular formula =(Total 12 ma	(3) rks)
Q3.			1-ene is a member of the alkene homologous series.	
	(a)	Pen	t-1-ene can be separated from other alkenes.	
			e the physical property of alkenes that allows them to be separated from a ure by fractional distillation.	(1)
	(b)	(i)	State the meaning of the term structural isomerism.	
				(2)

Name the branched chain isomer of pent-1-ene shown below.

(ii)

		(1)
(iii)	Draw the structure of a functional group isomer of pent-1-ene.	
		(1)
but	e cracking of one molecule of compound X produces pent-1-ene, ethene a cane in a 1:2:1 mol ratio. duce the molecular formula of X and state a use for the ethene formed.	ind
De	duce the molecular formula of X and state a use for the etherie formed.	
Мо	lecular formula of X	
Use	e of ethene	(0)
	(T	(2) (Fotal 7 marks

Q4.Some oil-fired heaters use paraffin as a fuel.

One of the compounds in paraffin is the straight-chain alkane, dodecane (C₁₂H₂₆).

(a) Give the name of the substance from which paraffin is obtained. State the name of the process used to obtain paraffin from this substance.

Substance	 	
_		

(c)

			(2)
(b)		combustion of dodecane produces several products.	
		e an equation for the incomplete combustion of dodecane to produce gaseous lucts only.	
			(1)
(c)	Oxio	des of nitrogen are also produced during the combustion of paraffin in air.	
	(i)	Explain how these oxides of nitrogen are formed.	
			(2)
			(-)
	(ii)	Write an equation to show how nitrogen monoxide in the air is converted into nitrogen dioxide.	
			(1)
	(iii)	Nitric acid (HNO ₃) contributes to acidity in rainwater.	
		Deduce an equation to show how nitrogen dioxide reacts with oxygen and water to form nitric acid.	
			(1)
(d)	Doo	Hecane ($C_{12}H_{26}$) can be cracked to form other compounds.	
	(i)	Give the general formula for the homologous series that contains dodecane.	

(1)

	(ii)	Write an equation for the cracking of one molecule of dodecane into equal amounts of two different molecules each containing the same number of carbon atoms. State the empirical formula of the straight-chain alkane that is formed. Name the catalyst used in this reaction.	
		Equation	
		Empirical formula of alkane	
		Catalyst	
			(3)
	(iii)	Explain why the melting point of dodecane is higher than the melting point of the straight-chain alkane produced by cracking dodecane.	
			(2)
(e)		e the IUPAC name for the following compound and state the type of structural erism shown by this compound and dodecane.	
		H CH_3 CH_3 H_3C H_3C H_3C H_3C H_3C H_3C H_3 H_4 H_5	
	IUPA	AC name	
	Турє	of structural isomerism	
			(2)
(f)	Dode	ecane can be converted into halododecanes.	

	Deduce the formula of a substance that could be reacted with dodecane to produce 1-chlorododecane and hydrogen chloride only.	
	(Total 16 mark	(1) (s)
be u	cane (C ₁₂ H ₂₆) is a hydrocarbon found in the naphtha fraction of crude oil. Dodecane can used as a starting material to produce a wide variety of useful products. The scheme ow shows how one such product, polymer Y , can be produced from dodecane.	
	Reaction 1	
	$C_{12}H_{26}$ \longrightarrow C_2H_4 + C_4H_8 + X	
	Reaction 2	
	nC_4H_8 \rightleftharpoons CH_3 H n	
(a)	Name the homologous series that both C_2H_4 and C_4H_8 belong to. Draw a functional group isomer of C_4H_8 that does not belong to this homologous series.	
	Name	
	Functional group isomer	
		(2)
(b)	Identify compound X.	
		(1)
(c)	Name polymer Y.	

		(1)
(d)	Reaction 1 is an example of thermal cracking and is carried out at a temperature of 750 °C.	
	State one other reaction condition needed.	
		(1)
(e)	Reaction 2 is exothermic. A typical compromise temperature of 200 °C is used industrially for this reaction.	
	Explain the effect of a change of temperature on both the position of equilibrium and the rate of reaction, and justify why a compromise temperature is used industrially.	
	(Total 11 ma	(6) ırks)